

Speaker: Alice Pagano

Ab-initio two-dimensional digital twin for quantum computer benchmarking

(2)

Collaboration of...

alice.pagano@uni-ulm.de

Classical simulation of QPU

Goal

➢ Gain insights on quantum hardware for QPU development

Large scale simulation to support the next decades of hardware developments

Our approach			
		We don't do	We do
	Gate:	Matrix	Pulse
	Qubits:	>100	>100
	Speed:	Faster	Slower

> Our **digital twin** can simulate different platforms, e.g. Rydberg quantum computer

4

Outline

➢Overview of Rydberg QPU

➤ Main ingredients of the digital twin

>Analysis of crosstalk between CZ gates

alice.pagano@uni-ulm.de

https://www.pi5.uni-stuttgart.de/research/rydberg-quantum-computer/

Rydberg QPU overview

Qubits in Strontium atom

38 55° Strontium 87.62 2 valence electrons

Cons Slow single-qubit gates

Fine-Structure Qubit

Tens of milliseconds

Fast single-qubit gates

Dephasing due to finite tensor polarizability

Nuclear Qubit

Minutes

Well-protected from environment

Cryogenic setup

alice.pagano@uni-ulm.de

alice.pagano@uni-ulm.de

One computation cycle for Rydberg QPU

Experimental setup of Rydberg QPU Using acousto-optic deflectors

M. Lukin, M. Endres

Position

Time

R

9

Δν

Digital twin of Rydberg QPU

alice.pagano@uni-ulm.de

A lot of ingredients...

Question

➢ Prepare global GHZ state

thequantumlaend.de

THE QUANTUM LÄND

RYDBERG QUANTUM COMPUTERS & SIMULATORS MADE IN STUTTGART.

Home News Projects - Platform - Partners About -

0

0

11

alice.pagano@uni-ulm.de

A lot of ingredients...

 $|0\rangle$

 $|0\rangle$

Parallel 1D case

Question

> Prepare global GHZ state

To which extent can we profit in 2d Rydberg systems from parallelization?

Hamiltonian of Rydberg QPU

alice.pagano@uni-ulm.de

Optimal pulses and gates

- Single-qubit gates: are implemented via Raman lasers
- Two-qubit gates: use the Rydberg interaction in the r-state to implement a CZ gate
- Protocol from Pagano et al, PRR 4, 033019 10% time speedup

alice.pagano@uni-ulm.de

Algorithm: compiler

Translate Hadamard into native gate set

 $H = \operatorname{Rot}_{Z}\left(\frac{\pi}{2}\right)\operatorname{Rot}_{X}\left(\frac{\pi}{2}\right)\operatorname{Rot}_{Z}\left(\frac{\pi}{2}\right)$

Translate CNOT into >10 native gates, CZ ...

2. Dedicated GHZ compiler

Set minimal distance r_g between CZ gates in parallel and track all the possibilities

alice.pagano@uni-ulm.de

Idea behind tensor networks

Schmidt decomposition

 $|\psi_{1,2,3,4}\rangle = \sum \lambda_i |\psi_{1,2,i}\rangle |\psi_{3,4,i}\rangle$

Singular Value Decomposition (SVD)

The entries of the diagonal matrix **D** are non negative numbers called **singular values**.

Intuitively, they indicate the amount of "*interaction*" between the information stored by **U** and **V**, and they mediate how those interactions contribute to the information represented by **M**.

example: image compression

In physics language...

k = number of singular values = bond dimension

K. M. Aiswarya, International Conference on Wireless Communications (2016) https://www.math3ma.com/blog/understanding-entanglement-with-svd

alice.pagano@uni-ulm.de

Numerical simulation with TTN

- We solve the Schrödinger equation
- Tree Tensor Networks (TTN) run Hamiltonian evolution
- Truncation in entanglement via Schmidt decomposition
- Time evolution via time-dependent variational principle
- > Van der Waals interaction included up to $r_g + d_{offset}$

alice.pagano@uni-ulm.de

Results of crosstalk analysis

alice.pagano@uni-ulm.de

Quantify crosstalk 4x4

The fidelity F of the algorithm is the state fidelity at the end $F = |\langle \psi(\tau) | \psi_{\text{GHZ}} \rangle|^2$ I = 1 - F

- 16 qubit GHZ state can reach fidelities above 0.9999 in a closed system
- > We define the safety distance for parallel execution of CZ gate at $\sqrt{8a}$

alice.pagano@uni-ulm.de

Quantify crosstalk 8x8

Step 44	Step 45	Step 46
	•••••	
	* • • • • • * •	•••••••
Step 47	Step 48	Step 49
	4 • • • • • • • • • • • •	********
	••••	

- 64 qubit GHZ state can reach fidelities above 0.99 in a closed system
- > We define the safety distance for parallel execution of CZ gate at 4a
- Larger system sizes profit more from parallelization

	< 15% overhead compared to min r_g circuit
)	> 35% speedup compared to CZ-serial circuit
	> 92% speedup compared to all-serial circuit

alice.pagano@uni-ulm.de

Ab-initio two-dimensional digital twin for quantum computer benchmarking Jaschke et al. arxiv: 2210.03763

64

Triangular lattice layout

- Different qubit layout can be implemented
- An atom can have 6 nearest neighbors

22

alice.pagano@uni-ulm.de

>Overview of Rydberg Quantum Processing Unit

> Develop digital twin of a quantum computer for Rydberg QPU

➢ Prepare global GHZ state and study gate crosstalk

- For 8x8 array, parallel CZ must be four lattice spacings apart
- Then, crosstalk is negligible in comparison to other sources of error

64 qutrits \approx 100 qubits

alice.pagano@uni-ulm.de

Ab-initio two-dimensional digital twin for quantum computer benchmarking Jaschke et al. arxiv: 2210.03763

thequantumlaend.de

Backup slides

alice.pagano@uni-ulm.de

Rydberg measurement 8x8

Decay from the Rydberg state is the most important source of error for a single CZ gate

$$\begin{split} H_{\rm OQS} &= H_{\rm Ryd} - {\rm i}\gamma \sum_{j,k} \left| r \right\rangle \left\langle r \right|_{j,k} \\ L_{\rm decay} &= \left| d \right\rangle \left\langle r \right| \end{split}$$

- Parallel execution of CZ gates leads to a remaining population in the Rydberg state as the gate is designed for serial use
- Remaining population quantifies the crosstalk: indicator of the fidelity of the state preparation.

alice.pagano@uni-ulm.de

Dephasing 8x8

- Fluctuations around the magic trapping condition lead to decoherence
- Fidelity between GHZ of n qubits and perfect GHZ state

$$\mathcal{F}_{\mathrm{D}}(t) = \frac{1}{2} + \frac{1}{2} \exp\left(-\frac{n \cdot t}{T_2}\right)$$

Proves the need to parallelize the circuit

Average error per layer

alice.pagano@uni-ulm.de

Design of high-fidelity controlled-phase gate

Reproduce protocol of Levine et al, PRL 123, 170503 (2019) for Rubidium

Can we go faster with optimal control?

QuOCS,

- ✓ Reduce the time spent in the Rydberg state with time-dependent detuning pulses.
- ✓ Identify largest sources of errors for a realistic Rydberg setup.

Error budgeting for a controlled-phase gate with strontium-88 Rydberg atoms

Alice Pagano[®],¹ Sebastian Weber[®],² Daniel Jaschke[®],^{1,3} Tilman Pfau[®],⁴ Florian Meinert[®],⁴ Simone Montangero[®],^{1,3,5} and Hans Peter Büchler[®]²

Design of high-fidelity controlled-phase gate

Basis states behavior for controlled-phase gate:

$$\begin{aligned} |00\rangle &\to |00\rangle \\ |01\rangle &\to |01\rangle \,\mathrm{e}^{\mathrm{i}\phi_{01}} & \qquad \mathsf{Symmetry:} \\ |10\rangle &\to |10\rangle \,\mathrm{e}^{\mathrm{i}\phi_{10}} & \qquad \phi_{10} \equiv \phi_{01} \\ |11\rangle &\to |11\rangle \,\mathrm{e}^{\mathrm{i}\phi_{11}} \end{aligned}$$

Condition: $\phi_{11} - \phi_{01} - \phi_{10} = (2n+1)\pi$

 $n \in \mathbb{Z}$

alice.pagano@uni-ulm.de

Design of high-fidelity controlled-phase gate

30

Time in |r
angle is reduced by 10% w.r.t. the protocol $({
m I})$

