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Quantum Matcha TEA (QMatchaTea) is a powerful quantum computer emulator within the Quantum Tensor Network Emulator Applications 
(Quantum TEA) suite, specifically designed to emulate quantum circuit using Matrix Product States (MPS) and Tree Tensor Networks (TTN), optimized 
for high-performance computing (HPC) environments. It is entirely written in Python, making it user-friendly and abstracting the need to manage 
backend operations.
QMatchaTea harnesses the efficiency of the tensor networks (TNs) methods, exploiting the sparsity and entanglement properties of quantum states 
to emulate large quantum systems with less memory resources compared to other emulation methods.
Moreover, the software integrates advanced linear algebra optimizations and parallel computing techniques, offering adaptability across various HPC 
architectures. QMatchaTea supports single-node emulation with GPU acceleration and distributed multi-node CPU emulation via Message Passing 
Interface (MPI). The tool's flexibility is further enhanced by support for multiple linear algebra backends, including NumPy/CuPy, PyTorch, JAX, and 
TensorFlow, allowing users to maximize the potential of their HPC infrastructure.

About QMatchaTea

More Info and Next Steps
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Key Features
• Tensor Network Methods:

• Uses MPS and TTN to emulate quantum systems.
• Optimized memory efficiency.

• Backends and Flexibility: Offers a variety of tensor modules 
backends to optimize performance for different use cases:
• NumPy and Cupy for CPU and GPU emulation.
• Additional support for PyTorch, JAX, and TensorFlow for 

broader adaptability to HPC infrastructures [1].

https://baltig.infn.it/quantum_matcha
_tea/py_api_quantum_matcha_tea

Matrix Product State Tensor Networks
• A Tensor network (TN) is a mathematical structure used to 

efficiently decomposing a large, global tensor into smaller, 
interrelated tensors, particularly in systems with many interacting 
components (e.g. quantum states) [2, 3, 4, 5].

• Matrix Product State (MPS) is one of the most widely used TN 
structures [2, 3, 4, 5]:
• It represents a large quantum state as a chain of small tensors:

• each tensor corresponds to a qubit;
• the edges between tensors represent the entanglement 

between neighboring qubits.
• To compress entanglement, MPS performs Singular Value 

Decomposition (SVD) and truncates the bond dimension 𝝌 [3,
5].

• We can compute the Fidelity Lower Bound of the truncation.
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• Scalability: Scalable to HPC clusters using MPI, making it suitable 
for large-scale simulations.

• Compatibility: QmatchaTea integrates with Qiskit to define 
quantum circuits for simulation.

Figure 1. Tensor modules backends implementation [1]. The way 
they are implemented, allows to use any of them easily.

Takeaways: 
• TNs compress the quantum correlations between subsystems, i.e., 

TNs compress entanglement [4, 5].
• MPS simulations are not limited by the number of qubits but by 

the entanglement [4, 5].
• The memory requirement for qubits is reduced w.r.t. exact state 

emulation methods: 𝑂 2𝑛 ⟶ 𝑂 2𝑛𝜒2  [5].
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Figure 2. MPS compression of entanglement via SVD can be compared to image
compression. The more we truncate the bond dimension 𝜒, the more we increase
the approximation (decrease the fidelity lower bound).
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Our emulation environment

Bibliography

Our emulated circuit: Quantum Volume (QV) random circuit + Quantum Fourier Transform (QFT)

Figure 4. Comparison between different HPC settings: single thread, single GPU, 2 
threads, 4 threads and 8 threads. The left y-axis reports QMatchaTea emulation 
times. Instead, the right y-axis reports the ratio between the execution times of the 
various HPC settings and the execution time of the single thread. It is possible to see 
that utilizing 2 threads effectively reduces the execution times, with a ratio between 
0.8 and 0.6, but that using more than 2 threads does not comport any improvement. 
Notably, the scalability of multi-threading remains relatively constant from 16 qubits 
onward, whereas GPU scalability improves with the increasing number of qubits. For 
less than 18 qubits, transporting information to/from the GPU is more expensive than 
GPU emulation itself.

Figure 5. Comparison of five different MPS emulations having different maximum 
bond dimensions 𝝌 values. The comparison is made using a single CPU. The used 𝜒 
values are functions of the number of qubits 𝑛; the five used functions are given in 

the legend. 𝜒 = 2 𝑛/2  represents the maximum theoretical value that the bond 
dimension can reach during the emulation and is the case where truncation is not 
performed. Consequently, in this case we have the highest emulation times, but also a 
fidelity of 1. The more we truncate, the faster the emulation will be, but the fidelity LB 
will also decrease.

Figure 6. Execution times comparison between QMatchaTea and Qiskit. The 
comparison is made for two different HPC emulation settings, single CPU and single 
GPU. It is possible to see how QMatchaTea emulation is faster than Qiskit emulation 
concerning both the HPC settings when we emulate more than 14 qubits in the GPU 
case and from 14 qubits on in the single thread case.

Figure 7. Execution times comparison between the different tensor module 
backends available in QMatchaTea. The comparison is made for two different HPC 
emulation settings, single CPU and single GPU. Notably, for all the tensor module 
backends, 18 qubits is the turning point where GPU becomes faster than CPU. It is 
also possible to see how, on Leonardo, the best backends to use are Numpy/Cupy and 
Torch in both scenarios. On different HPC systems, results may vary.

• Higly entangled state thanks to QV random
component.

• The depth of the circuit increases linearly with
the number of qubits.

Figure 3. Each layer of the Quantum Volume (QV) circuit is a random permutation of the qubits followed by a randomly selected 2-qubit gate operating on pairs of qubits. In the 
emulated model circuit, the structure incorporates a number of layers 𝑑 equal to the number of qubits 𝑛 [6]. When 𝑛 is an odd number, it results in one qubit remaining idle in 
every layer. The circuit in figure (a) depicts a QV circuit implemented using Qiskit having 𝑛 = 𝑑 = 4. In (b) the implementation of QV’s first layer is showed; the implementation 
of the others layers follow a similar scheme. In (c) it is possible to see a parallelizable version of Quantum Fourier Transform (QFT) [5]. 
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Benchmarking results from the European supercomputer Leonardo

• QMatchaTea is part of the whole quantum initiative at Cineca and 
QMatchaTea v1.1.4 is available on Leonardo:
1. module load profile/quantum
2. module load qmatcha_tea

• Next steps:
• Multi-GPU emulation implementation.
• Benchmarking of Torch Intel’s optimized version.
• Performances comparison with others MPS TNs emulators.
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Where not specified, the emulation results shown below were performed using the following settings: single CPU as device (Leonardo Booster

partition), maximum bond dimension 𝜒 = 2 𝑛/2 , Numpy or Cupy as tensor module backend.
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