
QMatchaTea

Vito Palmisano1,2, Marco Ballarin3, Gabriella Bettonte2, Daniel Jaschke3 ,4, Elise Jennings1, Sara Marzella2,
Simone Montangero3, Daniele Ottaviani2, Martin Ruefenacht1

Accelerating Quantum Circuit Emulations with Tensor Networks on HPC Systems

Abstract Scan the QR

Quantum Matcha TEA (QMatchaTea) is a powerful quantum computer emulator within the Quantum Tensor Network Emulator Applications
(Quantum TEA) suite, specifically designed to emulate quantum circuit using Matrix Product States (MPS) and Tree Tensor Networks (TTN), optimized
for high-performance computing (HPC) environments. It is entirely written in Python, making it user-friendly and abstracting the need to manage
backend operations.
QMatchaTea harnesses the efficiency of the tensor networks (TNs) methods, exploiting the sparsity and entanglement properties of quantum states
to emulate large quantum systems with less memory resources compared to other emulation methods.
Moreover, the software integrates advanced linear algebra optimizations and parallel computing techniques, offering adaptability across various HPC
architectures. QMatchaTea supports single-node emulation with GPU acceleration and distributed multi-node CPU emulation via Message Passing
Interface (MPI). The tool's flexibility is further enhanced by support for multiple linear algebra backends, including NumPy/CuPy, PyTorch, JAX, and
TensorFlow, allowing users to maximize the potential of their HPC infrastructure.

About QMatchaTea

More Info and Next Steps

1 ParTec AG, Germany; 2 SCAI - SuperComputing Applications and Innovation – CINECA, Italy; 3 University of Padova and INFN, Sezione di Padova, Italy; 4 Institute for complex quantum systems, Ulm University, Germany

Key Features
• Tensor Network Methods:

• Uses MPS and TTN to emulate quantum systems.
• Optimized memory efficiency.

• Backends and Flexibility: Offers a variety of tensor modules
backends to optimize performance for different use cases:
• NumPy and Cupy for CPU and GPU emulation.
• Additional support for PyTorch, JAX, and TensorFlow for

broader adaptability to HPC infrastructures [1].

https://baltig.infn.it/quantum_matcha
_tea/py_api_quantum_matcha_tea

Matrix Product State Tensor Networks
• A Tensor network (TN) is a mathematical structure used to

efficiently decomposing a large, global tensor into smaller,
interrelated tensors, particularly in systems with many interacting
components (e.g. quantum states) [2, 3, 4, 5].

• Matrix Product State (MPS) is one of the most widely used TN
structures [2, 3, 4, 5]:
• It represents a large quantum state as a chain of small tensors:

• each tensor corresponds to a qubit;
• the edges between tensors represent the entanglement

between neighboring qubits.
• To compress entanglement, MPS performs Singular Value

Decomposition (SVD) and truncates the bond dimension 𝝌 [3,
5].

• We can compute the Fidelity Lower Bound of the truncation.

Benchmarking results

TorchAPI, JaxAPI,
TensorFlowAPI

Operators

Convergence parameters

Observables

Emulator

Tensors

Operators

Convergence parameters

Observables
Tensors

Py emulator

Circuit Utils

• Scalability: Scalable to HPC clusters using MPI, making it suitable
for large-scale simulations.

• Compatibility: QmatchaTea integrates with Qiskit to define
quantum circuits for simulation.

Figure 1. Tensor modules backends implementation [1]. The way
they are implemented, allows to use any of them easily.

Takeaways:
• TNs compress the quantum correlations between subsystems, i.e.,

TNs compress entanglement [4, 5].
• MPS simulations are not limited by the number of qubits but by

the entanglement [4, 5].
• The memory requirement for qubits is reduced w.r.t. exact state

emulation methods: 𝑂 2𝑛 ⟶ 𝑂 2𝑛𝜒2 [5].

𝑎00 𝑎01

𝑎10 𝑎11

… 𝑎0𝑚

… 𝑎1𝑚… …
𝑎𝑛0 𝑎𝑛1

… …
… 𝑎𝑛𝑚

212x247 image
52364 pixels

19320 pixels

4600 pixels

𝑈𝑆𝑉𝑇

80%
truncation

95%
truncation

no truncation

𝑢00 𝑢01

𝑢10 𝑢11

𝑢02

𝑢12
𝑢20 𝑢21 𝑢22

𝑠00 𝑠01

𝑠10 𝑠11

𝑠02

𝑠12
𝑠20 𝑠21 𝑠22

𝑣00 𝑣01

𝑣10 𝑣11

𝑣02

𝑣12
𝑣20 𝑣21 𝑣22

Figure 2. MPS compression of entanglement via SVD can be compared to image
compression. The more we truncate the bond dimension 𝜒, the more we increase
the approximation (decrease the fidelity lower bound).

Booster partition DCGP partition

Nodes 3456 1536

Processors
single socket 32 cores Intel

Ice Lake CPU
dual socket 56 cores Intel

Sapphire Rapids CPU

Accelerators
4 x NVIDIA Ampere
GPUs/node, 64GB

-

Cores 32 cores/node 112 cores/node

RAM
512 (8x64) GB DDR4 3200

MHz
512 (16 x 32) GB DDR5

4800 MHz

Our emulation environment

Bibliography

Our emulated circuit: Quantum Volume (QV) random circuit + Quantum Fourier Transform (QFT)

Figure 4. Comparison between different HPC settings: single thread, single GPU, 2
threads, 4 threads and 8 threads. The left y-axis reports QMatchaTea emulation
times. Instead, the right y-axis reports the ratio between the execution times of the
various HPC settings and the execution time of the single thread. It is possible to see
that utilizing 2 threads effectively reduces the execution times, with a ratio between
0.8 and 0.6, but that using more than 2 threads does not comport any improvement.
Notably, the scalability of multi-threading remains relatively constant from 16 qubits
onward, whereas GPU scalability improves with the increasing number of qubits. For
less than 18 qubits, transporting information to/from the GPU is more expensive than
GPU emulation itself.

Figure 5. Comparison of five different MPS emulations having different maximum
bond dimensions 𝝌 values. The comparison is made using a single CPU. The used 𝜒
values are functions of the number of qubits 𝑛; the five used functions are given in

the legend. 𝜒 = 2 𝑛/2 represents the maximum theoretical value that the bond
dimension can reach during the emulation and is the case where truncation is not
performed. Consequently, in this case we have the highest emulation times, but also a
fidelity of 1. The more we truncate, the faster the emulation will be, but the fidelity LB
will also decrease.

Figure 6. Execution times comparison between QMatchaTea and Qiskit. The
comparison is made for two different HPC emulation settings, single CPU and single
GPU. It is possible to see how QMatchaTea emulation is faster than Qiskit emulation
concerning both the HPC settings when we emulate more than 14 qubits in the GPU
case and from 14 qubits on in the single thread case.

Figure 7. Execution times comparison between the different tensor module
backends available in QMatchaTea. The comparison is made for two different HPC
emulation settings, single CPU and single GPU. Notably, for all the tensor module
backends, 18 qubits is the turning point where GPU becomes faster than CPU. It is
also possible to see how, on Leonardo, the best backends to use are Numpy/Cupy and
Torch in both scenarios. On different HPC systems, results may vary.

• Higly entangled state thanks to QV random
component.

• The depth of the circuit increases linearly with
the number of qubits.

Figure 3. Each layer of the Quantum Volume (QV) circuit is a random permutation of the qubits followed by a randomly selected 2-qubit gate operating on pairs of qubits. In the
emulated model circuit, the structure incorporates a number of layers 𝑑 equal to the number of qubits 𝑛 [6]. When 𝑛 is an odd number, it results in one qubit remaining idle in
every layer. The circuit in figure (a) depicts a QV circuit implemented using Qiskit having 𝑛 = 𝑑 = 4. In (b) the implementation of QV’s first layer is showed; the implementation
of the others layers follow a similar scheme. In (c) it is possible to see a parallelizable version of Quantum Fourier Transform (QFT) [5].

(a)

(b) (c)

Benchmarking results from the European supercomputer Leonardo

• QMatchaTea is part of the whole quantum initiative at Cineca and
QMatchaTea v1.1.4 is available on Leonardo:
1. module load profile/quantum
2. module load qmatcha_tea

• Next steps:
• Multi-GPU emulation implementation.
• Benchmarking of Torch Intel’s optimized version.
• Performances comparison with others MPS TNs emulators.

[1] D. Jaschke et. al, “Benchmarking Quantum Red TEA on CPUs, GPUs, and TPUs”, 5 Sep 2024.
[2] Román Orús, “A practical introduction to tensor networks: Matrix product states and
projected entangled pair states”, Annals of Physics, vol. 349, Pages 117-158, 2014.
[3] P. Silvi et. al, “The Tensor Networks Anthology: Simulation techniques for many-body
quantum lattice systems”, SciPost Phys. Lect. Notes, 2019.
[4] L. Tagliacozzo et al., “Scaling of entanglement support for matrix product states”, Physical
Review B 78, jul 2008.
[5] M. Ballarin and S. Montangero, “Quantum Computer Simulation via Tensor Networks”,
Padua Thesis and Dissertation Archive, sep 2021.
[6] A. W. Cross et. al, “Validating quantum computers using randomized model circuits”,
Physical Review A, vol. 100, no. 3, sep 2019.

Where not specified, the emulation results shown below were performed using the following settings: single CPU as device (Leonardo Booster

partition), maximum bond dimension 𝜒 = 2 𝑛/2 , Numpy or Cupy as tensor module backend.

	Slide 1

